Leakage-Resilient Signatures with Graceful Degradation
نویسندگان
چکیده
We investigate new models and constructions which allow leakage-resilient signatures secure against existential forgeries, where the signature is much shorter than the leakage bound. Current models of leakage-resilient signatures against existential forgeries demand that the adversary cannot produce a new valid message/signature pair (m,σ) even after receiving some λ bits of leakage on the signing key. If |σ| ≤ λ, then the adversary can just choose to leak a valid signature σ, and hence signatures must be larger than the allowed leakage, which is impractical as the goal often is to have large signing keys to allow a lot of leakage. We propose a new notion of leakage-resilient signatures against existential forgeries where we demand that the adversary cannot produce n = bλ/|σ|c + 1 distinct valid message/signature pairs (m1, σ1), . . . , (mn, σn) after receiving λ bits of leakage. If λ = 0, this is the usual notion of existential unforgeability. If 1 < λ < |σ|, this is essentially the usual notion of existential unforgeability in the presence of leakage. In addition, for λ ≥ |σ| our new notion still guarantees the best possible, namely that the adversary cannot produce more forgeries than he could have leaked, hence graceful degradation. Besides the game-based notion hinted above, we also consider a variant which is more simulationbased, in that it asks that from the leakage a simulator can “extract” a set of n − 1 messages (to be thought of as the messages corresponding to the leaked signatures), and no adversary can produce forgeries not in this small set. The game-based notion is easier to prove for a concrete instantiation of a signature scheme. The simulation-based notion is easier to use, when leakage-resilient signatures are used as components in larger protocols. We prove that the two notion are equivalent and present a generic construction of signature schemes meeting our new notion and a concrete instantiation under fairly standard assumptions. We further give an application, to leakage-resilient identification. ∗Partially supported by European Research Council Starting Grant 279447. Partially supported by DFF Starting Grant 10-081612. Partially supported by the Danish National Research Foundation and The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, and also from the CFEM research center (supported by the Danish Strategic Research Council.
منابع مشابه
Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model
We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations w...
متن کاملMind Your Coins: Fully Leakage-Resilient Signatures with Graceful Degradation
We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience). The main feature of our constructions, is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. Th...
متن کاملLeakage-Resilient Signatures
The strongest standard security notion for digital signature schemes is unforgeability under chosen message attacks. In practice, however, this notion can be insufficient due to “side-channel attacks” which exploit leakage of information about the secret internal state. In this work we put forward the notion of “leakage-resilient signatures,” which strengthens the standard security notion by gi...
متن کاملEncryption Schemes with Post-Challenge Auxiliary Inputs
In this paper, we tackle the open problem of proposing a leakage-resilience encryption model that can capture leakage from both the secret key owner and the encryptor, in the auxiliary input model. Existing models usually do not allow adversaries to query more leakage information after seeing the challenge ciphertext of the security games. On one hand, side-channel attacks on the random factor ...
متن کاملWhat Information Is Leaked under Concurrent Composition?
A long series of works have established far reaching impossibility results for concurrently secure computation. On the other hand, some positive results have also been obtained according to various weaker notions of security (such as by using a super-polynomial time simulator). This suggest that somehow, “not all is lost in the concurrent setting.” In this work, we ask what and exactly how much...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014